2,148 research outputs found

    Towards the automation of product geometric verification: An overview

    Get PDF
    The paper aims at providing an overview on the current automation level of geometric verification process with reference to some aspects that can be considered crucial to achieve a greater efficiency, accuracy and repeatability of the inspection process. Although we are still far from making this process completely automatic, several researches were made in recent years to support and speed up the geometric error evaluation and to make it less human-intensive. The paper, in particular, surveys: (1) models of specification developed for an integrated approach to tolerancing; (2) state of the art of Computer-Aided Inspection Planning (CAIP); (3) research efforts recently made for limiting or eliminating the human contribution during the data processing aimed at geometric error evaluation. Possible future perspectives of the research on the automation of geometric verification process are finally described

    Modeling, assessment, and design of porous cells based on schwartz primitive surface for bone scaffolds

    Get PDF
    The design of bone scafolds for tissue regeneration is a topic of great interest, which involves diferent issues related to geometry of architectures, mechanical behavior, and biological requirements, whose optimal combination determines the success of an implant. Additive manufacturing (AM) has widened the capability to produce structures with complex geometries, which should potentially satisfy the diferent requirements. These architectures can be obtained by means of refned methods and have to be assessed in terms of geometrical and mechanical properties. In this paper a triply periodic minimal surface (TPMS), the Schwarz's Primitive surface (P-surface), has been considered as scafold unit cell and conveniently parameterized in order to investigate the efect of modulation of analytical parameters on the P-cell geometry and on its properties. Several are the cell properties, which can afect the scafold performance. Due to the important biofunctional role that the surface curvature plays in mechanisms of cellular proliferation and diferentiation, in this paper, in addition to properties considering the cell geometry in its whole (such as volume fraction or pore size), new properties were proposed. Tese properties involve, particularly, the evaluation of local geometrical-diferential properties of the P-surface. Te results of this P-cell comprehensive characterization are very useful for the design of customized bone scafolds able to satisfy both biological and mechanical requirements. A numerical structural evaluation, by means of fnite element method (FEM), was performed in order to assess the stifness of solid P-cells as a function of the changes of the analytical parameters of outer surface and the thickness of cell. Finally, the relationship between stifness and porosity has been analyzed, given the relevance that this property has for bone scafolds design

    An investigation on skeleton-based top-down modelling approaches of complex industrial product

    Get PDF
    In industry, today's approach to assembly design is still largely based on a bottom-up approach which, in contrast with the most advanced top-down techniques, is unfit to deal with very large and complex products. The reason for this lies in the high number of relationships to be established between parts and in the lack of a high-level control of the assembly design. This makes the management of design changes a labor-intensive process and the capture of design intent difficult to achieve. The paper, referring to the most advanced research fields of Concurrent Engineering and Knowledge-Based Engineering, focuses on a top-down modelling approach based on skeleton, which constitutes the most natural but still scarcely exploited way to attain a high reactivity to design modifications. Through the application of suitable methodologies, such as that one for a SKeLeton geometry-based Assembly Context Definition (SKL-ACD), the skeleton is also able to capture and codify assembly process engineering information since the early phases of the product development process. With the purpose of promoting the knowledge of these skeleton-based modelling techniques, that have a great relevance for training professional, technical and mechanical engineers, this paper implements the SKL-ACD methodology to an industrial case study in order to identify, with a unique and repeatable workflow, the reference geometrical entities and the mutual relationships to embed into the product skeleton. The skeleton types and the related fields of use are also described, placing particular emphasis on problems or shortcomings still not resolved, especially in consideration of the need to assist the designer in defining the impact of a parameter on assembly modification and in avoiding loops while defining formulas. A new tool, in the form of a multilayer graph, is finally proposed that is able to display and differentiate clearly the formulas, the design parameters and the impact of their modification on skeleton entities and members of the assembly

    Morphological and Mechanical Characterization of P-Scaffolds with Different Porosity

    Get PDF
    The aim of this paper is to model and to compare the results of the mechanical characterization, carried out on numerical models and real specimens, of uniform P-scaffolds with different porosity values. The analysis includes the morphological characterization of 3D printed specimens and the implementation of a FEM shell model to reproduce a compressive test suitable for mechanical properties evaluation of PLA scaffolds. Young modulus and yield strength were also obtained, in order to verify the numerical model accuracy, by experimental tests on 3D printed PLA scaffolds. Numerical results showed that the shell model was able to reproduce, more efficiently compared to a solid model proposed in a previous work, both elastic and plastic behavior of the scaffolds, providing elastic modulus values very close to the experimental ones. On the other hand, the not very high quality of the 3D printing, detected by MicroCT analysis, caused a significant dispersion in the yield strength numerical values respect to the real data. Anyway, an inverse correlation between mechanical properties and porosity was found as expected. The elastic modulus values were similar to the typical values of the trabecular bone for whose regeneration this kind of scaffolds is usually employed

    Predictive Values of Transcutaneous Oxygen Tension for Above-the-ankle Amputation in Diabetic Patients with Critical Limb Ischemia

    Get PDF
    ObjectiveTo assess the values of transcutaneous oxygen tension (TcPO2) capable of predicting above-the-ankle amputation in diabetic patients diagnosed for critical limb ischemia (CLI) according to the criteria of the TransAtlantic Inter-Society Consensus.DesignRetrospective study.MethodsFrom January 1999 to December 2003, 564 diabetic patients were consecutively hospitalized for CLI in one limb. Revascularization with angioplasty or bypass graft was performed when possible and, if not possible, prostanoid therapy was used. In patients in whom therapies did not relieve the rest pain or the gangrene was extended above the Chopart joint, an above-the-ankle-amputation was performed. After treatment TcPO2 values were evaluated in all patients at the dorsum of the foot.ResultsFifty-five (9.8%) patients underwent an above-the-ankle amputation: 22 of 420 patients who underwent angioplasty, 17 of 117 patients who underwent bypass (14.5%) and 16 of 27 patients in whom revascularization was not possible. Post-treatment TcPO2, measured by a receiver operating characteristic (ROC) curve, showed a value 34mmHg as the best threshold for determining the need for revascularization, with an area under the curve of 0.89 (95%CI 0.85–0.94).Using logistic regression analysis the probability of above-the-ankle amputation for this threshold is 9.7% and reduces to 3% for TcPO2>40mmHg.ConclusionTcPO2 levels<34mmHg indicate the need for revascularization, while for values ≥ 34<40mmHg this need appears less pressing, although there remains a considerable probability of amputation. TcPO2 levels greater than 40mmHg suggest that revascularization is dependent on the severity of tissue loss and possible morbidity caused by the procedure

    Towards Socially and Emotionally Believable ICT Interfaces

    Get PDF
    In order to realize an artificial intelligence focused on human needs, it is necessary to identify the interactional characteristics that describe human mood, social behavior, beliefs, and experiences. The cross-modal analysis of communicative macro-signals represents the first step in this direction. The second step requires the definition of adequate mathematical representations of these signals to validate them perceptively (on the human side) and computationally

    Mobile radio interferometric geodetic systems

    Get PDF
    Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed

    Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors

    Get PDF
    NMDA receptors (NMDARs) are a major class of ionotropic glutamate receptors that can undergo activity-dependent changes in surface expression. Clathrin-mediated endocytosis is a mechanism by which the surface expression of NR2B-containing NMDA receptors is regulated. The C terminus of the NMDA receptor subunit NR2B contains the internalization motif YEKL, which is the binding site for the clathrin adaptor AP-2. The tyrosine (Y1472) within the YEKL motif is phosphorylated by the Src family of kinases and this phosphorylation inhibits the binding of AP-2 and promotes surface expression of NMDA receptors. Cdk5 is a serine/threonine kinase that has been implicated in synaptic plasticity, learning, and memory. Here we demonstrate that inhibition of Cdk5 results in increased phosphorylation of Y1472 NR2B at synapses and decreased binding of NR2B to beta2-adaptin, a subunit of AP-2, thus blocking the activity-dependent endocytosis of NMDA receptors. Furthermore, we show that inhibition of Cdk5 increases the binding of Src to postsynaptic density-95 (PSD-95), and that expression of PSD-95 facilitates the phosphorylation of Y1472 NR2B by Src. Together, these results suggest a model in which inhibition of Cdk5 increases the binding of Src to PSD-95 and the phosphorylation of Y1472 NR2B by Src, which results in decreased binding of NR2B to AP-2, and NR2B/NMDAR endocytosis. This study provides a novel molecular mechanism for the regulation of the surface expression of NR2B-containing NMDA receptors and gives insight into the Cdk5-dependent regulation of synaptic plasticity

    Coarse Grained Density Functional Theories for Metallic Alloys: Generalized Coherent Potential Approximations and Charge Excess Functional Theory

    Full text link
    The class of the Generalized Coherent Potential Approximations (GCPA) to the Density Functional Theory (DFT) is introduced within the Multiple Scattering Theory formalism for dealing with, ordered or disordered, metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. The GCPA density functional consists of marginally coupled local contributions, does not depend on the details of the charge density and can be exactly rewritten as a function of the appropriate charge multipole moments associated with each lattice site. A general procedure based on the integration of the 'qV' laws is described that allows for the explicit construction the same function. The coarse grained nature of the GCPA density functional implies great computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the Charge Excess Functional (CEF) theory [E. Bruno, L. Zingales and Y. Wang, Phys. Rev. Lett. {\bf 91}, 166401 (2003)] which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art LAPW full-potential density functional calculations for 62, bcc- and fcc-based, ordered CuZn alloys, in all the range of concentrations. These extensive tests show that the discrepancies between GCPA and CEF are always within the numerical accuracy of the calculations, both for the site charges and the total energies. Furthermore, GCPA and CEF very carefully reproduce the LAPW site charges and the total energy trends.Comment: 19 pages, 11 figure
    • …
    corecore